Physics 8A: Mon Sept 30

Review From Last Time:

• In one dimension, work done on an object

$$W = F_x \Delta x$$

measured in joules (J)

$$1 J = 1 Nm$$

• In three dimensions

$$W = \vec{F} \cdot \Delta \vec{r}$$

where "dot product" or "scalar product" is defined

$$\vec{A} \cdot \vec{B} = |A||B|\cos\theta \tag{1}$$

$$= A_x B_x + A_y B_y + A_z B_z \qquad (2)$$

where θ is the angle between \vec{A} and \vec{B}

- Only component of the force along (or opposite) the direction of motion does work
 - Work done by gravity: $-mg(y_f - y_i)$ independent of path
 - Work done *to oppose* gravity: $+mg(y_f-y_i)$ independent of path
- If the force is not constant, divide path into segments and integrate
 - In one dimension

$$W = \int_{x_i}^{x_f} F_x(x) dx$$

- In three dimensions

$$W = \int_{\vec{r_i}}^{\vec{r_f}} F(\vec{r}) \cdot d\vec{r}$$

– Example: For spring with spring constant k work done on the spring is:

$$W = \frac{1}{2}k(x_f^2 - x_i^2)$$

Today Wolfson 6.2-6.4 Wed Wolfson 7.1-7.3